COMMUNITY-BASED ADAPTATION TO CLIMATE CHANGE

Charles Nyandiga
UNDP-GEF CBA Coordinator
The Community-Based Adaptation (CBA) Programme of UNDP

- The goal of the Programme is to enhance adaptation and strengthen the resiliency of communities to address climate change impacts.
- CBA Programme is implemented by the United Nations Development Programme (UNDP) and largely funded by the Global Environment Facility (GEF) and other donors (Governments of Australia, Japan and Switzerland).
- GEF-Small Grants Programme (SGP) and UNDP Country Offices provides the delivery mechanisms and infrastructure.
- UNDP has partnered with the United Nations Volunteers (UNV) programme to enhance community mobilization, facilitate volunteers’ contributions and ensure inclusive participation in the programme,
- UNV facilitates capacity building of partner non-governmental organizations (NGOs) and community-based organizations (CBOs).
The CBA Programme is being implemented in **52 countries globally with 42 SIDS** and started in 2008

- There are **3 Projects** in the programme. **SPA CBA** (Global Pioneer Project), **MAP CBA** (Mekong-Asia and Pacific Regions) and **SIDS CBA** (Small Islands Developing States).

- **Namibia, Niger, Morocco, Seychelles, Cape Verde, Comoros and Mauritius** are the African countries covered by the CBA programme.

- Why are SIDS a Preference: This states have **low availability of resources, small but rapidly growing populations, geographical remoteness, susceptibility to natural disasters, excessive dependence on international trade, high transportation and communication costs, and costly public administration**

Community members performing Social Mapping
• Caribbean region:
 • Antigua & Barbuda
 • Dominican Republic
 • St. Kitts and Nevis
 • Barbados
 • Grenada
 • St Lucia
 • Belize
 • Guyana
 • St. Vincent & Grenadines
 • Cuba
 • Haiti
 • Suriname
 • Dominica
 • Jamaica
 • Trinidad & Tobago

• Pacific Region:
 • Cook Islands
 • Nauru
 • Solomon Islands
 • Fiji
 • Niue
 • Tokelau
 • Federated States of Micronesia
 • Palau
 • Tonga
 • Kiribati
 • Papua New Guinea

• Pacific Region continued
 • Tuvalu
 • Marshall Islands
 • Samoa
 • Vanuatu

• Other SIDS in Atlantic and Indian Oceans:
 • Cape Verde
 • Guinea Bissau
 • Sao Tome & Principe
 • Comoros
 • Maldives
 • Seychelles
 • Timor-Leste
 • Mauritius
A case study on CBA as an Approach and Tool to Enhance Conservation Tillage Practices in Namibia
Objectives of SPA CBA in Namibia

Harnessing multiple coping strategies for a holistic approach towards community adaptation to climate change: the use of Conservation Agriculture (CA) in Namibia.
Context Description

- **Floods** from Angola and past war activities
- **Soils** in the north can be described as brittle with light, low clay contents and fertility, with serious lack of phosphorus.
- Forms **hard pans** and **alkalinization** due to prolonged water stagnation in the farms and fields
- Impacts on food, water securities and general livelihoods.
Target Community

• Eight villages (Olukonda, Esheshete, Elondo, OIKE and Siya/Kapako communities) and one centre for orphans, vulnerable children and their communities.

• The target groups comprise subsistence farmers (mostly women and youth)

• Target group depends on: 1) rain fed agriculture (planting pearl millet, maize, sorghum, ground nuts and cowpeas), 2) Natural resources (collecting fruit and oil from the wild) and; 3) livestock rearing both for subsistence as well as cash incomes

• Number of members of community reached are 2,900
Climate Change Risks Factors

- Extreme local climate events evidenced by pronounced drought and floods,
- Increase and variable temperatures,
- Increasingly unpredictable rainfall patterns and amounts,
- Severe land degradation leading to loss of productive arable land and range,
- Loss of livestock, as well as high levels of deforestation and over utilization of natural resources.
The SPA CBA project is piloting **six coping strategies** in Namibia at **different sites**. These strategies include:

1. Ensuring greater water security in the region in the face of increasing climate change pressures,
2. Production of vegetables irrigated by flood waters,
3. Improvement of dryland crop production,
4. Increased use of new and drought-resistant crops,
5. Introduction of energy efficient stoves and
6. Increased awareness about adaptation strategies.

This information helps inform community decisions on the selection of coping strategies, including whether more than one strategy can be implemented at a time.

Given the **complexity of climate change impacts**, this **multi-strategy risk-transfer approach** is necessary particularly for risk averse communities.
• Testing the Vulnerability Reduction Assessment (VRA) tool
• The UNV community consultative and mobilization instruments and methods,
• The Programme has generated invaluable knowledge, Practices and Lessons for Replication and Up-scaling.
• The VRA Methodology is briefly discussed in the next 3 slides
Vulnerability Reduction Assessment (VRA)

- **How? When?**

 VRA is composed of **4 indicators**, that are transformed into **4 questions** (tailored to the local context).

 These questions form the core of a **“VRA participatory workshop”**, that is organized at least **3 times** in the course of a project, in the community (at the beginning, at mid-course of project implementation, at the end).

<table>
<thead>
<tr>
<th>UNDP Adaptation Policy Framework Step</th>
<th>VRA Indicator</th>
<th>VRA Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessing current vulnerability</td>
<td>1. Vulnerability of livelihood/welfare to existing climate change and/or climate variability.</td>
<td>Example: What happens when there is drought? How does this affect you and your community?</td>
</tr>
<tr>
<td>Assessing future climate risks</td>
<td>2. Vulnerability of livelihood/welfare to developing climate change risks.</td>
<td>Example: What would happen if drought was twice as frequent? How would this affect you and your community?</td>
</tr>
<tr>
<td>Formulating an adaptation strategy</td>
<td>3. Magnitude of barriers (institutional, policy, technological, financial, etc) barriers to adaptation.</td>
<td>Example: What stands in the way of adapting to increasing drought? What means do you or your community have to manage events occurring more frequently?</td>
</tr>
<tr>
<td>Continuing the adaptation process</td>
<td>4. Ability and willingness of the community to sustain the project intervention</td>
<td>Example: Rate your confidence that the (project activity) will continue after the project period.</td>
</tr>
</tbody>
</table>
Impact Assessment Systems (IAS)

WHAT

• Systematically capture and document **off-site, indirect** and **longer-term impacts** - "**ex-post evaluation**". Generates GEB Measurements

HOW

• Using **proxy** and **development indicators** while project is ongoing
• Using **structured QBS** during and after project closure
• External **independent evaluations by consultants**

WHEN

• Minimum **5 years after project completion**-Done by UNDP EO
SGP’s Impact Assessment System

Why?
Measure the **Global Environmental Benefits** and the **Livelihood / Empowerment** benefits generated by the project.

What?
- **GEB**
 - **Biodiversity**—(# of species, innovations/new technologies, local/national policies)
 - **Land Degradation**—(ha. of land restored, land sustainably managed, tons of soil erosion prevented, # of innovations/new technologies, local/national policies)

- **Livelihood / Empowerment**
 - **Poverty Reduction**—(# of households or individuals who benefited from the project, income generation achieved through the project...)
 - **Capacity Building**—(# of NGOs, community groups whose capacities were increased, # of women participating, support ensured from local / governmental institutions...)

![Image of forested area]
SGP’s Impact Assessment System ctd.

Who, How ? And When ?

At project conception, chose one GEB indicator and one LIVELIHOOD / EMPOWERMENT indicator

During project development, measure the baseline values of the indicators and prepare your monitoring plan (in project proposal) –

During project implementation, measure the evolutions of the indicators (project reports) – RESPONSIBILITY OF THE GRANTEE

At the end of the project, measure the final indicator (final participatory evaluation / final report) – RESPONSIBILITY OF THE GRANTEE

Monitoring Plan –

-What you will measure (indicator)
-What is the target value of your indicator
-How you will measure it
-When you will measure it
-Who will measure it

<table>
<thead>
<tr>
<th>IAS Indicator to be measured</th>
<th>How it will be measured</th>
<th>When it will be measured</th>
<th>Target value to be achieved by project end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb of ha of degraded land restored / combat land degradation</td>
<td>Addition of the surface of all the pilot sites that have been planted, and that have benefitted from resilient farming practices</td>
<td>Regular monitoring after completion of each activity + At the end of the project</td>
<td>4 ha of farmland + 10 ha of forest land</td>
</tr>
<tr>
<td>Nb of NGOs and Community Groups participating / capacity building</td>
<td>For all activities, a list of participants is made, desegregating the different community groups (farmers, NGO members, women, elders)</td>
<td>Regular monitoring after completion of each activity + At the end of the project</td>
<td>-One NGO -3 community groups (farmers, women, youth).</td>
</tr>
</tbody>
</table>
Summary of practice in Namibia

- To build **resilience** and **adaptation** to climate change induced risks for **agro-pastoral communities** through **improved soils management practices**
- Includes conservation agriculture in combination with **appropriate crop rotation** and **composting practices** - Long Term
- Identification of **climate change drivers, risks and adaptive solutions** - Short Term
- Improved Yields from 209 kg/ha to 1,176 kg/ha
Critical Success Factors

• **Awareness** created and **strategic mobilization in the communities**

• **Applied and Appropriate Technology** support

• **Using the known’s (Seeds source) to the unknowns (testing new technologies)**

• The need to have a **functioning and continuous community based and managed support systems**
Replicability of Practices

- Ideal for unpredictable rainfall events and patterns as well as for an arid area with light, alkaline soils such as those of northern Namibia.
- Contributes to improve the soils nutrient levels.
- Returned plant residues adds to increased crops yield at household farm gates levels.
- Can be organized thru a “Farmer” day modelled along the lines of a “farmer’s field schools” approach for a wider outreach to all target grps.