

Part 2 Integration of priority setting with industry standards

Critical habitat & High Conservation Value

Overlapping interests

Integration with industry standards

- Highest value areas would, ideally, be formally protected
- However, most will fall within commercial concessions or areas targeted by industry (mining, palm oil etc)
- Decisions should therefore *involve* government and industry stakeholders.
 - Protecting priority areas in commercial concessions incurs a cost on the operator, so needs to be based on science, and be transparent
- Approaches:
 - Macro-zoning (allocation of permits... No go areas for plantations)
 - Micro-zoning (management areas plans within concessions)
- Both must link to industry standards for biodiversity protection:
 - IFC standards and Critical habitat
 - FSC and RSPO standards and High Conservation Value areas

IFC Performance Standard 6

- Critical habitat definition
 - Habitat of significant importance to Critically Endangered and/or Endangered species;
- No intervention in critical habitat that would lead to a NET reduction in the global or national/regional population of any recognized Critically Endangered or Endangered species over time
- Offsets may be used to ensure residual impacts are mitigated.

High Conservation Value areas

- The 'High Conservation Value' concept was developed by the FSC for forest certification (a voluntary industry standard)
- A safeguard criteria for biodiversity and cultural values
- HCV criteria provide a framework for stakeholders to define what they think are important attributes
- The criteria are based on attempts by Birdlife International and The Nature conservancy to define significant or important concentrations of biodiversity
- Adopted by the Forest Stewardship Council (FSC) and the Roundtable on Sustainable Palm Oil (RSPO)

HCV criteria

- An HCV area is any are that holds a significant concentration of biodiversity values (endangered or endemic species) at the national, regional or global level.
- This could be a significant concentration of one endangered species
 - E.g. A nationally significant population of great apes
 - Ex. Une population des grands singes significative au niveau national
- Or, a concentration of several endemic species
 - i.e. An important bird area (sensu Birdlife International)
- Or a significant congregation of migratory species

Why is it important?

- Companies who are committed to the certification process (FSC forest management), are committed to safeguard these areas from threats that will have negative impacts on the conservation value
- HCV areas must be managed in such a way as to ensure the conservation value is maintained or enhanced
- HCV designation maybe compatible with low impact forestry activity
- But,
- HCV areas cannot be converted to plantations (RSPO criterion 7.3)

Interpretation of the definitions

- Threshold values for these attributes need normally to be defined at country level by relevant stakeholders.
- However the lack of data and expertise has slowed this process
- Result: companies and their auditors define their own values!
- Objective of this workshop is to develop a standard and widely accepted definition of significant concentrations of great apes, which can be used to map HCV areas
- This definition can be adopted by industry standards, creating a transparent generating leverage over land use decisions

Aligning great ape priorities and HCV

- Discussion: best methods to define and delineate significant populations:
 - Absolute density threshold
 - Population size and intactness
 - Target population level

Conclusions

- Modelling populations permits decisions to be taken about priority zones in a stakeholder forum
- Different methods are available to define thresholds.
- Important that these thresholds are consistent with the language of industry standards to ensure priority areas are considered High Conservation Value areas
- Transparent process allows government and industry buy in and increases the uptake and impact of the exercise

Example: using population size to define priority level

John Pilgrim: The Biodiversity Consultancy

Vulnerability of biodiversity feature ³⁵ Irreplaceability of management unit	Critically Endangered	Endangered	Vulnerable	Near Threatened/ Least Concern	Data Deficient/ Not Evaluated
Sustaining ≥ 95% of global range/population	Extremely High Risk	Extremely High Risk	Very High Risk	High Risk	
Sustaining ≥ 10% of global range/population	Extremely High Risk	Very High Risk	High Risk	Medium Risk	Assign to a threat level or apply precautionary principle ³⁶
Sustaining ≥ 1% of global range/population	Very High Risk	High Risk	Medium Risk	Low Risk	
Sustaining ≥ 0.1% of global range/population	High Risk	Medium Risk	Low Risk	Low Risk	
Sustaining < 0.1% of global range/population	Medium Risk	Low Risk	Low Risk	Low Risk	

