Hidden gold in the dirt? – Soil carbon, climate change, & socio-economic development in East Africa

By

Mark E. Ritchie, Ph.D.

Professor, Department of Biology, Syracuse University Soils for the Future, LLC

meritchi@syr.edu; +1-315-447-1612

Rural African Livelihoods and the Loss of Productive Capacity

Pastoralists and nomadism

- Sedentary livestock husbandry: animals consume > 95% of forage production
- Loss of soil organic matter and waterholding capacity
- Increased vulnerability to drought, limited livestock value

Agro-pastoralists and shifting agriculture

- Fires to clean crop litter, attract game, convert trees into fertilizer
- Fires spread in woodlands and forests causing loss of standing carbon and soil fertility in natural ecosystems
- Loss of biodiversity and ecotourism opportunities

Continuous Grazing and Soil Degradation

Continuous Unrestricted Grazing, Tragedy of the Commons

Excessive Burning and Soil Degradation

Unrestricted Burning, Residual Crop Burning Poaching

Late Fires

"In the Middle of Difficulty Lies Opportunity"

What if the process of degradation could be reversed? What if new carbon could be stored in the soil?

Albert Einstein

- Remove CO₂ from the atmosphere
- Restore soil and water and productive capacity
- Conserve biodiversity wind
- Social well-being, financial capital

Climate Smart Agriculture: A Triple Win Quadruple

Potential for Soil Carbon Sequestration in Africa

- Overgrazed and overburned grasslands, savannas and woodlands
- Recover 0.5 1.5
 tons CO₂e / ha
- ~600 million ha overgrazed by livestock
- ~600 million ha suffer too-frequent hot fires.
- ~ 1 billion tons CO₂e sequestered each year

Migratory Grazing in East Africa and Soil Carbon Storage

Grazed

8 Sites across Serengeti National Park (Anderson et al. 2007 *Ecology*, Ritchie 2014 *PeerJ*)

Research supported by the National Science Foundation and Syracuse University

Migratory Grazing in East Africa and Soil

Carbon Storage

Serengeti migratory grazing system (SNAP model)

A test of the SNAP model in a northern Kenya pastoralist system

Sustainable Grazing and Water

Sustainable Grazing Practices

Migratory Grazing Concepts Applied to Livestock

Voluntary Carbon Finance

Registry Awards *Verified Carbon Credits* in Return
for NEW Land Use for 30 yrs)

Top 20 companies bought 18.8 million credits for \$ 97.2 million USD in 2014 (average price ~\$5.00 USD per credit)

Conservancy

Protecting nature. Preserving life.™

Companies seeking

Corporate Social

Responsibility,

Governments

Rotational Grazing: Does It Work? Northern Kenya Conservancies

NDVI = "greenness" index based on reflected light detected by satellite measures available forage

Effect of
Rotational
vs
Continuous
Grazing

Grazing Management and Soil Carbon

~10 Years management in Buffer, 3 years rotational grazing,

Core = No Livestock

Buffer = Seasonal grazing + recent rotational grazing

Old boma – fertilized patches with distinct vegetation

Settlement = Continuous, unrestricted grazing in all seasons

SOC Accrual (tons/ha)/
Year
Sandy Loam Black Cotton

Observed 0.41(0.09) 0.75(0.25)

SNAP
Prediction 0.38(0.04) 0.47(0.06)

Grazing Management and Biodiversity

Core = No Livestock

Buffer =
Seasonal
grazing +
recent
rotational
grazing

Old boma – fertilized patches with distinct vegetation

Settlement = Continuous, unrestricted grazing in all seasons

Northern Kenya Carbon Project

Successful implementation of rotational grazing over **86%** of the project area in 2014

1.5 million carbon credits

Project Implementation and Satellite Monitoring

Ecology of Scale: The Curious Case of Westgate Conservancy

Net Forage Loss

No Net Change

Net Forage Gain

\$4.5 million in investment in improved grazing, Grevy's Zebra Trust, USAID, Save the Children, The Nature Conservancy, Northern Rangelands Trust

Grevy's Zebra – Endangered Species

Westgate Conservancy

Socio-economic Development From Carbon Finance

Livestock as Assets
Shoats Dominate
Unproductive Pasture
Rare Water and Conflicts

Donor Subsidies

Market

Current

Climate Variability and Change

Improving Pasture
Expanding infrastructure
Expanding Products and Markets

Assisted Market Community Investment in livestock value chain

+ 5-10 Years
Carbon Financed

Improved Cattle Breeds
Productive Pasture
Fertile Soils, Widespread
Water

+ 10-20 Years, Self-Sustaining

Conclusions

- Rangelands critical to mitigating climate char
- Spiral of degradation, loss of soil carbon... can be reversed!
- Multiple wins: soil, water, productivity, biodiversity, people
- Encompass spatial and temporal variability: Essential that projects be large-scale
- Tools? Ecosystem models and satellite image interpretation
- Incentives? Markets for ecosystem services carbon
- Carbon market -> Cash for infrastructure -> selfsustaining economy